
Think: instead of functions but data so which container contaisn what varables? Think variables

grouped

Think: Objects  Method/properties

History of JavaScript:

 Developed by netscape was caliied livescape

 Joint dev with sun Microsoft system 1995

 ECMA-262 or ECMAscript become standard 262 of European computer manufactures

 Cilent-side technology

o Code is downloaded to web browser and executed by client.

o Can’t do direct manipulation of resources on server side (access data in central

database)

o Web client has full access to original script source code so user have ability to read

the original code

 Can be used for host environment (server-side) such as node.js and electron for desktop

o Global object is  global scope for node.js (node. JavaScript)

o Window object  global scope for web browser environment

o **Think node.js (**think Is terminal compiler)

 Console object  display program output error messages (think JavaScript console in view

developer chrome)

Javascript execution environment:

 Uses node.JS environment and the global object is: Global

 Object: Global contains: Properties + Methods

o EG: Array, object, string math and properties specific for node.js

 For Object: Global properties are automatically available everywhere in script without object

reference (think of object: global as before the main in c programming)

o EG: console.log(global.parseFloat(“3.14xradius”);

 Global is the object and parsefloat is method but since the object: global is

available anywhere no need to include

Javascript web execution environment: (think html)

 Top level referencing environment for scripts

 Object: windows represent window in which the browser displays the document

 Object: window contains: values, function, constructors, objects (defined in javascript core)

 Variable and functions you declare are properties of object: windows

Console output:

 Display program output, error messages and other information

 Found in object: windows (web browser environment) and global (node.js)

User input:

 Found in object: windows (web browser environment) and global (node.js) but we will talk

about global (node.js) syntax

 Readline-syn module

o EG:

JavaScript primitive data types: JavaScript do not specify variable data type it is inferred during run

time (c programming we normally state)

 Number type: a number (**Think in c programming we don’t have float or integer or short

to distinguish but by default stored as a double precision position floating point values)

 String: sequence of characters

 Boolean: true (any number 1,2,3) or false (0 value or empty string)

 Null: not pointing to anything or any object

o Variable type is object

o Output: ‘null’

Objects:

 The purpose of objects is a computer representation of real objects in real world. Because in

a real world we have many object such as: dogs, table, lights.

 Objects made up of 

o Properties (information about particular object or set of variables)

o Behaviour (things that the object can do or manipulate the data stored in object)

represented through

 Methods (or functions in c programming)

Type of object:

 Javascript core built-in objects: (think node.js)

o They represent the data type:

 Number, string, Boolean (once you declare these they become primitives

data type as above), Array

o For special task (think object constructor. Refer to bottom of sheet highlight for use)

 Date, math, regexp, object, string

 Standard objects provided (built in) by web browser environment

o They represent objects associated with web browser:

 Navigator, window, history, location (currently url of window)

 HTML Document object model (DOM):

o When web page is loaded the HTML page is represented as a tree of objects each

object represent element (HTML, HEAD, BODY ELEMENT etc)

 Document object

o Purpose of JavaScript code is to manipulate document object model (tree)

Object (constructor): Date (refer to above)

 Methods (called behaviours ie things object can do) allow us to create and manipulate dates

Object (constructor): Array (refer to above)

 List of variables that are usually related in some way and can be referenced using index

 The elements of a single array can contain: Numbers and strings doesn’t have to be same

type (**think in c programming an array had to be same type like number)

 To create one refer below for the New and an object constructor method or second

method because its an object constructor

o Syntax the array(array length/elements)  That’s the difference inside bracket array

length OR

o Var ArrayName = [element1, element2, element3..];

 Methods (behaviours)

Object (constructor): String (refer to above)

 A lot of methods that allow you to manipulate strings

 For: charAt indexOf, substring refer to powerpoint for detailed examples

Object in real world: EG: Car

 Properties: (what makes up the car)

o The number of wheels

o Height of car

o Number of doors it has

 Behaviour:

o Car make noise

o Drive the car

o Change the car colour

Notice: JavaScript has no classes only functions + objects

Var <Variable name> = <value>;

 Value: Could be string  ‘John’
 Variable and function declaration is treated as if they’re moved to the top of current scope

o Eg: var bot

 Output is ‘undefined’ but it is declared which is works

o But the assignment of ‘Value’ isn’t

String  number/float/int (object: number)

 Console.log(Number(“313”) + 10)

 Console.log(parsefloat/parseint(“313=var) + 10)

o Note: the bracket can also contain strings because it separates the numbers from

other stuff

o EG: console.log(parseint(“50StringisHere”)+10)

 So the string “stringishere” is not converted

Returning single value from function:

Var

 Return single value. For multiple values manipulate parameters.

 Use Var before function  var function(parameter)

 Don’t say returning value data type (In c programming it would be int functioName) or

parameter data type. Just use the variable name.

 Usually the parameters are values given already in main section of code ie:

o

Creating object:

Var ObjectName = {

 //Properties

 Name: Value (or string),

 Name: Value,

 //Behaviours

 Name: function() { what It does };

OR New and an object constructor method (Think create new object based off the base of a built

in object)

Var objectName = new objectConstructorName()

Accessing objects:

Var ObjectName = {

 //Properties

 Name: Value ‘(or string)’,

 Name: Value,

 //Behaviours

 Name: method/function() { what It does };

 Accessing the object

Var storage = Objectname.propertyName

Var storage = ObjectName.behaviourName()  If it is accessing behaviours

OR

Var objectName = new object()

 Accessing the object

Var storage = objectName.methodName()

 So the methodName() are the in-built methods/functions of the object that has been

referenced. (**Think we are creating new object based off a in-built object. The new object

will have method/function of the in-built object)

Unique Behaviours

 This is a keyword allows us to reference variables outside function

