Think: instead of functions but data so which container contaisn what varables? Think variables
grouped

Think: Objects = Method/properties

History of JavaScript:

e Developed by netscape was caliied livescape
e Joint dev with sun Microsoft system 1995
e ECMA-262 or ECMAscript become standard 262 of European computer manufactures
e Cilent-side technology
o Code is downloaded to web browser and executed by client.
o Can't do direct manipulation of resources on server side (access data in central
database)
o Web client has full access to original script source code so user have ability to read
the original code
e (Can be used for host environment (server-side) such as node.js and electron for desktop
o Global object is € global scope for node.js (node. JavaScript)
o Window object €< global scope for web browser environment
o **Think node.js (**think Is terminal compiler)
e Console object € display program output error messages (think JavaScript console in view
developer chrome)

Javascript execution environment:

e Uses node.JS environment and the global object is: Global
e Object: Global contains: Properties + Methods

o EG: Array, object, string math and properties specific for node.js
e For Object: Global properties are automatically available everywhere in script without object

reference (think of object: global as before the main in ¢ programming)
o EG: console.log(global.parseFloat(“3.14xradius”);
= Global is the object and parsefloat is method but since the object: global is
available anywhere no need to include

Javascript web execution environment: (think html)

o Top level referencing environment for scripts

o Object: windows represent window in which the browser displays the document

e Object: window contains: values, function, constructors, objects (defined in javascript core)
e Variable and functions you declare are properties of object: windows

Console output:

e Display program output, error messages and other information
e Found in object: windows (web browser environment) and global (node.js)

User input:

e Found in object: windows (web browser environment) and global (node.js) but we will talk
about global (node.js) syntax
e Readline-syn module
o EG:

JavaScript primitive data types: JavaScript do not specify variable data type it is inferred during run
time (c programming we normally state)

e Number type: a number (**Think in c programming we don’t have float or integer or short
to distinguish but by default stored as a double precision position floating point values)
e String: sequence of characters
e Boolean: true (any number 1,2,3) or false (0 value or empty string)
e Null: not pointing to anything or any object
o Variable type is object
o Output: ‘null’

Objects:

e The purpose of objects is a computer representation of real objects in real world. Because in
a real world we have many object such as: dogs, table, lights.
e Objects made up of >
o Properties (information about particular object or set of variables)
o Behaviour (things that the object can do or manipulate the data stored in object)
represented through
= Methods (or functions in c programming)

Type of object:

e Javascript core built-in objects: (think node.js)
o They represent the data type:
= Number, string, Boolean (once you declare these they become primitives
data type as above), Array
o For special task (think object constructor. Refer to bottom of sheet highlight for use)
= Date, math, regexp, object, string

e Standard objects provided (built in) by web browser environment
o They represent objects associated with web browser:
= Navigator, window, history, location (currently url of window)

e HTML Document object model (DOM):
o When web page is loaded the HTML page is represented as a tree of objects each
object represent element (HTML, HEAD, BODY ELEMENT etc)
= Document object
o Purpose of JavaScript code is to manipulate document object model (tree)

Object (constructor): Date (refer to above)

e Methods (called behaviours ie things object can do) allow us to create and manipulate dates

Some Date Methods

Method Description
getDate () Returns a number from 1 to 31, representing the
date of the month.
getDay () Returns a number from 0 (Sunday) to 6
(Saturday) representing the day of the week.
getFullYear () Returns the year as a four digit number.
getHours () Returns a number from 0 to 23 representing

hours since midnight.

getMinutes () Returns a number from 0 to 59 representing the
minutes for the time.

Some Date Methods

Method Description

setDate (val) Sets the day of the month to val.

setHours (h, m, s, ms) Sets the hour; the first argument is the only
one required.

setMonth (val) Sets the month to val.

toString() Returns a string representation of the date
and time specific to the locale of the
computer.

Object (constructor): Array (refer to above)

e List of variables that are usually related in some way and can be referenced using index
o The elements of a single array can contain: Numbers and strings doesn’t have to be same
type (**think in c programming an array had to be same type like number)
e To create one refer below for the New and an object constructor method or second
method because its an object constructor
o Syntax the array(array length/elements) € That’s the difference inside bracket array
length OR
o Var ArrayName = [elementl, element2, element3..];
e Methods (behaviours)

Array Methods

» pop (): removes an element from the end of the
array, and returns the removed element.

» push () : adds one or more elements to the end
of the array.

* shift ():removes the first element from the
array and returns the removed element.

« unshift ():adds one or more elements to the
beginning of the array.

* splice ():adds and/or removes a portion of the
array.

62

Array Methods

* sort (): sorts the elements of the array
alphabetically.

* reverse ():reverses the order of elements in

the array.

* slice ():returns a portion of the array, called a

subarray.

« concat (): combines the elements of two arrays
into a third.

Object (constructor): String (refer to above)

e Alot of methods that allow you to manipulate strings

Some String Methods

Method Parameters Result

charAt A number Returns the character in the String
object that is at the specified
position

indexOf One-character string | Returns the position in the String
object of the parameter

substring Two numbers Returns the substring of the String
object from the first parameter
position to the second

toLowerCase | None Converts any uppercase letters in
the string to lowercase

toUpperCase | None Converts any lowercase letters in
the string to uppercase

e For: charAt indexOf, substring refer to powerpoint for detailed examples

Object in real world: EG: Car

e Properties: (what makes up the car)
o The number of wheels
o Height of car
o Number of doors it has
e Behaviour:
o Car make noise
o Drive the car
o Change the car colour

Notice: JavaScript has no classes only functions + objects

Var <Variable name> = <value>;

e Value: Could be string = ‘John’
e Variable and function declaration is treated as if they’re moved to the top of current scope
o Eg:varbot
= Qutput is ‘undefined’ but it is declared which is works
o But the assignment of ‘Value’ isn’t

String = number/float/int (object: number)

e Console.log(Number(“313”) + 10)

e Console.log(parsefloat/parseint(“313=var) + 10)
o Note: the bracket can also contain strings because it separates the numbers from

other stuff
o EG: console.log(parseint(“50StringisHere”)+10)
= Sothe string “stringishere” is not converted

Returning single value from function:

Var

function name (parameters)

{
code for the function

return value;

e Return single value. For multiple values manipulate parameters.

e Use Var before function = var function(parameter)

e Don’t say returning value data type (In c programming it would be int functioName) or
parameter data type. Just use the variable name.

e Usually the parameters are values given already in main section of code ie:

o

function areaOtCircle (radius) {
I;_‘Var PT = 340153
return PI*radius*rsadius;

}

console.log(”circle area is “ + areaOfCircle(5.4));
41

Creating object:

Var ObjectName = {
//Properties
Name: Value (or string),

Name: Value,

//Behaviours

Name: function() { what It does };

var myDog = |{
name: “alex”,
breed: ”Labrador”,

color: “black”,

bark: function(){ console.log(“Woof woof woof!”) }

OR New and an object constructor method (Think create new object based off the base of a built
in object)

‘ Var objectName = new objectConstructorName()

var today = new Date();

Accessing objects:

Var ObjectName = {
//Properties
Name: Value ‘(or string)’,
Name: Value,

//Behaviours

Name: method/function() { what It does };

- Accessing the object

Var storage = Objectname.propertyName

Var storage = ObjectName.behaviourName() € If it is accessing behaviours

OR

Var objectName = new object()

- Accessing the object

Var storage = objectName.methodName()

e So the methodName() are the in-built methods/functions of the object that has been
referenced. (**Think we are creating new object based off a in-built object. The new object
will have method/function of the in-built object)

Unique Behaviours

-—
var student = |
name: "John",
student no: 123456,
major: "computer science",
initoz fTunectaieni) |
return this.name + " " + this.student no
+ " " 4+ this.major;

console. lrif"-] (student.info());

e This is a keyword allows us to reference variables outside function

